A medical student’s perspective at Auckland Rescue Helicopter Trust

For those of you who might have missed a few posts on here, you may not realize that HEMS has picked up a straggler along the way. I am a 5th-year medical student interested in pre-hospital and retrieval medicine, as well as anything high-stress and involving trauma and emergency. My role down at the base is to help out the HEMS doctors with setup of simulation scenarios, as well as keeping the simulation equipment and all our training packs stocked and ready to go. I am also keen to learn from everyone at the base on topics ranging from pre-hospital ultrasound to flying on instrument flight rules (IFR), as well as trying to convince myself and all the paramedics that one day I will be able to do a full-extension pull-up. Watch this space.

Today we unveiled our beautiful new manikins from Laerdal by using them in a simulated scenario on beta-blocker overdose.  We recruited the duty crew from the base, with the understanding that if a job came in they could easily leave the simulated scenario and go. We set it up as if the patient was in a remote medical centre after being retrieved by on-site paramedics from her home. The crew arrived to find a paramedic (yours truly) with the patient who had HR 30-35, bp 70/40, sats 97% on air, and RR 16/min. She had also had a 4-second period of asystole en route to the medical centre.

The team moving the patient onto the stretcher - ready for transport. Pads in place and ready for anything! Picture is a bit blurry because the team was moving with such efficiency & speed!

The team moving the patient onto the stretcher – ready for transport. Pads in place and ready for anything! Picture is a bit blurry because the team was moving with such efficiency & speed!

The remote control of the new manikin allowed us to simulate the heart rate and resps, whilst still maintaining fidelity of the scenario. This manikin also has the ability to moan, cough and respond yes or no, meaning the GCS could be fairly adequately ascertained. We used a sim technique we call ‘veining’ for cannula placement, which involves taping IV extension tubing up the arms of the manikin using skin-like tape with a cannula in the ACF, and then attaching an empty saline bag to the tubing to act as a reservoir. This allowed the participants to push drugs and run fluids, again preserving the fidelity of the scenario. We also used a piece of software called SimMon (for iPad), which can be set up to look like a regular monitor and will make appropriate noises when remotely controlled from iPhone (including that sweat-inducing desaturation beep). Our manikin can generate heart rhythms on our cardiac monitors but we use SimMon technology to supplement O2 saturation and blood pressure values.

The manikin with "veins" taped along the arms. It allows for actual IV starts and fluid administration. Everything is collected into the empty 1L NS bag.

The manikin with “veins” taped along the arms. It allows for actual IV starts and fluid administration. Everything is collected into the empty 1L NS bag.

This scenario utilized many things that I’m coming to realise are important in in-situ simulation. Firstly we used the duty crew, meaning that we didn’t have to get anyone to come in on their days off. But also that if a call came in for a job, our crew remains operational and can respond to that at any moment. So this makes our training highly efficient.   Secondly, this scenario was run on-site, including in the back of the chopper itself. Again excellent for fidelity and also for practicing techniques in a confined space. We are also vigilant about our labeling of training gear with bright red tags to ensure nothing from our training gear gets mixed with operational equipment.. A debrief time is equally as important as scenario-time, and this can be hard to facilitate if everyone disappears halfway through!

As a student, I found this scenario enlightening from both a simulation and medical point of view. I did some reading around beta-blocker overdoses and I found an excellent review about the use of high-dose insulin. Insulin has an increased inotropic effect on the heart, and clinical experience has shown that this has beneficial effects on patients who have overdosed on beta- and calcium-channel blockers. It’s also relatively cheap, readily available, and the dose to remember is easy – 1IU/kg bolus, then follow with 1-10IU/kg/hr infusion. Of course glucose needs to be monitored and a D5 infusion should be run whilst giving the insulin, and may need to be continued for up to 24h after the insulin has stopped. Monitoring the potassium is equally important, but remember the hypokalaemia is more due to cellular shift than overall potassium loss. There isn’t much data on the use of insulin in pre-hospital settings for such overdoses but it likely could be used during long flight times like inter-facility transfers. During our debrief, the clinicians felt it was more important to initiate early transport than high-dose insulin therapy in the field. But the discussion is pertinent and worth having.

All in all today was a good day for learning some key simulation techniques and some good emergency medicine. And apart from that, I managed to ask at least 14 irrelevant questions and steal 2 coffees, a yoghurt and half a banana from the lunchroom. So really a most successful morning.

Rossi Holloway

___________________

Full-text pdf for the reference above can be found here (secure area limited to ADHB staff only – ADHB has online subscription access to this journal via the Philson Library at the University of Auckland School Of Medicine)

A simulation update: Latest session at the ARHT base

This week we ran an in-situ simulation with our duty crew (crewman, paramedic and doctor). We had great participation in a challenging scenario of massive hemorrhage in a blunt trauma patient.

As our simulation experience continues to grow we are always trialling new things. This past week we integrated several techniques that helped enhance the scenarios fidelity.

The scenario was a patient who had fallen off his motorbike at highspeed. There was a paramedic already on scene when our team arrived. The patient was in shock: BP 95/60, 130bpm, RR 28, 87% on room air, GCS 15.

Here’s a brief outline of what we did and why!

  • In-situ simulation: Make the most of the availability of your team. On the job training during a work day is a great way of maximizing educational opportunities. It doesn’t require that people come in on their day off and they still get paid while at work except their learning. We don’t use any expensive simulation centre – instead only using our training packs and equipment we were able to run this scenario at NO COST!
Mid way through a resus. We have all hands on deck, even getting our cameraman Matt to hold the IV!

Mid way through a resus. We have all hands on deck, even getting our cameraman Matt to hold the IV!

  • Set the scene with a video: using footage from the TV show Rescue 1 (filmed on our helicopters) we were able to begin the simulation with our team watching 2 minutes of a scenario to help them better picture the scene and envision the challenges of the local surroundings
  • Live patient actor: in scenarios that don’t require intubation this is especially powerful since we were able to capture our team’s ability to communicate with a live patient. Our patient had multiple traumatic injuries that was causing considerable pain. The team used managed the pain with ketamine and small doses of fentanyl. It was especially helpful to have a live patient since participants would receive real-time feedback if their pain regimen was working.
Having a live patient actor is a great asset and can add extra fidelity to the scenario. Definitely alters the way clinicians approach and speak with the patient.

Having a live patient actor is a great asset and can add extra fidelity to the scenario. Definitely alters the way clinicians approach and speak with the patient.

  • SimMon: I highly recommend this for anyone interested in doing in-situ simulation. Using an iPad and an iPhone, linked by Bluetooth (no Wifi needed) we are able to have a patient monitor with fully adjustable and modifiable vital signs! I have no relationship with the company that makes the app but we use it regularly and it’s must have for any educator running in-situ simulation. Available for download for less than $20NZD.
  • Ultrasound images for eFAST: Our doctor (Alana) performed a pre-hospital FAST and lung ultrasound. We had images and video downloaded ahead of time on a computer to show her the findings. This provided more realistic visual feedback that closely mimics a real clinical setting.
Alana checking out the eFAST findings on the laptop. Diagnosing pneumothorax & positive FAST

Alana checking out the eFAST findings on the laptop. Diagnosing pneumothorax & positive FAST

  • Integration of new medication: We are in the process of integrating a Tranexamic Acid protocol for trauma patients with suspected hemorrhage. This was our first time trialling the medication in a simulation setting. Great discussion around timing and especially helpful for our clinical team that we have clear guidelines when it can be administered.
  • Observation/Feedback by an industrial engineer: Tammy Bryan, is an industrial engineer from Auckland District Health Board, who joined us to observe our work with an interest in the ergonomics of scene set up. This was useful for a current state analysis and the beginning to work towards any changes that can make us more efficient!

Huge thanks to Bruce Kerr, Greg Brownson and Alana Harper who participated as our clinical and operational crew for the scenario. Also a huge thanks to Alice who was our live patient for the scenario. She did an outstanding job acting as a patient in pain with multiple injuries! Don’t worry, our team took care of her with lots of pain meds administered! And Chris was our paramedic who provided outstanding pre-hospital care before the team arrived

New clinical simulation lab at ARHT and our newest team member!

Over the past few months at ARHT, we’ve been working to secure a location that can be used as our clinical sim lab. While most of our sim is done outside, this will allow for a “think tank” and location to keep all of our supplies. A spot like this will have a huge positive impact on improving our ability to run effective in-situ simulation.

Rossi, our Emergency Medicine award winning medical student (and newest team member) While it may not be the exact replica of the EM award...it's pretty close!

Rossi, our Emergency Medicine award winning medical student (and newest team member) While it may not be the exact replica of the EM award…it’s pretty close!

In addition, we plan to use this site for task training and trialling new equipment. While it has taken some time to get it organized, we’ve made huge progress recently. One of the main reasons we’ve had such success can be attributed to our newest education team member, Rossi, who is a senior medical student at the University of Auckland. She has a keen interest in emergency medicine, retrieval medicine and trauma. Her enthusiasm has been crucial to getting us up and running with a fully functional sim lab. We should also acknowledge her recent achievement as the recipient of a special mention in Emergency Medicine for dedication & teamwork at U of Auckland Medical school. Welcome Rossi, and we look forward to all that you bring!

I also felt it would be great to show the progress we’ve made with the sim lab. This will be an outstanding location to think, work and practice. We’ll be able to re-pack packs for simulations and engage in task training modules.

Here’s a few pics of the progress…and completion!

Sim lab: the beginning

Sim lab: the beginning

Rossi doing her best Vanna White impersonation

Rossi doing her best Vanna White impersonation

Sim Lab: the current state! Ready for use!

Sim Lab: the current state! Ready for use!

Sim Lab: airway task trainers...clearly needing a cric to be performed!

Sim Lab: airway task trainers…clearly needing a cric to be performed!