About alanah2013

Emergency Medicine Specialist, Auckland City Hospital. HEMS Physician and Clinical Lead for Quality and Safety, Auckland HEMS

Patient safety in helicopter emergency medical services (HEMS): The safety management system

“Insanity: doing the same thing over and over and expecting different results”. Albert Einstein.

You could be right in thinking that “safety crusaders” are the glass half empty type, right? Those that believe “what can go wrong, will go wrong” (Murphys Law).

I’m not a pessimist, but I do believe in being prepared for the potential for error, or for when things do genuinely go wrong.  We need to avoid Einstein’s insanity; repeating that same thing and expecting different results the next time (as the next time might be a catastrophic outcome).  As HEMS clinicians we have a responsibility to get our patients from the pre-hospital to the hospital environment without harm, to the best of our abilities.  A culture of safety and forethought, identifying and mitigating for potential hazards (threat and error management) is a prominent facet of our work.

Both Aviation and medicine involve teams of highly skilled people working together in a high-stakes environment involving people’s lives. The obvious major difference is human beings are not planes or computer controlled, and interactions with people are so multifaceted and the human body so complex, that events cannot always be predictable.  Therefore we need to mitigate somewhat for that unpredictability. (Perhaps introduce the concept of ‘Threat and error management?’)

Aviation has bred a culture of safety for many years now and, although a little way down the track, Medicine (especially Anaesthetic and Surgical services) has been learning from this and applying appropriately modified safety techniques including:

  • ·         Human Factors and (team) training
  • ·         Ergonomic design and usability testing
  • ·         Checklists
  • ·         Communication Techniques
  • ·         Pre-procedural briefings
  • ·         Simulation Training (muscle memory)
  • ·         Debriefing
  • ·         Error/Incident reporting

Auckland HEMS has, from the outset actively promoted the already robust culture of patient safety at ARHT. We have introduced RSI checklists, human factors training, dedicated medical simulation training and (thanks to generous funding from ARHT and ADHB) a now a fully functioning clinical simulation lab. Furthermore we now have access to a multidimensional computerised safety management system (SMS) which the ARHT has recently introduced.  Originally developed for aviation, the system contains enough flexibility to expand into the clinical role of the HEMS service. This includes safety and quality reports (which can be anonymous), inventory management (circulation, maintenance and ordering of drugs and equipment) and personnel currency – ensuring all crew take a personal responsibility in being “flight-ready”.  There is also scope for a clinical risk register, which we are currently developing.

This brings me on to the value and/or role of Safety Management Systems (SMS) from a clinical perspective:

Definition of an SMS from the Civil Aviation Authority NZ  is a “formal organisational framework to manage safety.  Under an SMS, organisations will need to have systems for

  • ·         Error, threat and hazard identification
  • ·         Risk management
  • ·         Safety targets
  • ·         Reporting processes
  • ·         Procedures for audit, investigations, remedial actions
  • ·         Safety education…

… and to be effective it must be part of everyday practice”.

All these facets have an application to clinical care, not just aviation. Although it is arguable that we do all of the above currently, a systems approach means that the formally isolated clinical components of risk, safety, and quality of care are brought together in everyday practice in an integrated manner. This approach requires a strong safety culture within an organisation together with consistent managerial support.  It also needs individual accountability and that personnel are empowered to speak out.  It is in this complex environment where the integration offered by an SMS comes into its own.

The system and practice of safety not only relies on people putting their hand up and reporting incidents, it is also dependent on the staff on the ground having access to outcomes, therefore facilitating behavioural and organisational change.  Auckland HEMS safety reports allow all operational crew to have visibility of current and past events, to read comments from  the experts’ on a real time forum, as well as the opportunity to comment themselves. This whole-crew approach enables transparency and has been invaluable in providing a 360 degree scrutiny of the incident from both a clinical and aviation perspective, as well as the potential for change, outcomes and trends in incidents.

In the initial stages encouraging reporting can be difficult:  apart from the medico-legal aspect other barriers to reporting can include:

  • ·         Time
  • ·         Personnel buy-in
  • ·         Lack of “champions” in the organisation
  • ·         The thought that it is “somebody else’s job”

Error, near misses and incident reporting has not translated as well into medicine as it has in aviation. Humans in general have an innate distrust of any Orwellian “Big Brother” watching their every move looking for mistakes. This also stems from a prominent medico-legal “blame” culture, which medicine has been slow in overcoming.  Patient safety depends on open disclosure of error or near misses, primarily to avoid the same happening to someone else. Open disclosure (naively) would be the ideal, however may never be feasible due to the potential for individual blame for system faults.

To quote the Institute of Healthcare Improvement (IHI) “the focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system”.

The next question: would it be feasible to introduce an integrated SMS into the healthcare setting? A one-stop systematic shop for inventory, maintenance of equipment, personnel, rostering (shift-work and fatigue), clinical risk registers and safety reporting – and making this part of everyday practice? This has been approached by Toney in his paper (free online access to PDF here.)

Finally I would be interested in finding out how other HEMS / EMS services have developed their clinical risk registers. Feel free to comment below.

A Military Aviation model for Patient Safety?

In the September 2013 edition of the British Medical Journal, Robyn Clay-Williams has published a thought provoking article on the modelling of clinical risk management on civil aviation practices, and questions whether a military aviation model may be more prudent when assessing and managing risk in the healthcare environment.  The abstract can be found HERE.

The author questions the appropriateness of translating sometimes rigid civil aviation processes (and a zero tolerance for risk) into healthcare, as some healthcare systems (such as emergency departments and intensive care units) need more flexibility and autonomy in their workings and risk management. She suggests managing risk in high stakes clinical environments such as these would be more conducive to a military aviation model – the parallels being teams with limited resources who deal routinely with unpredictable situations, complex and time critical operations (as would happen frequently in the pre-hospital environment or the ED resus room).

Suggestions for improving the adaptability and resilience of health care organizations in the realms of risk management derived from a military model include:

  • planning for the unexpected
  • training for the worst: simulation training of worst case scenarios allows decision making under pressure and can help develop spare capacity
  • training disparate teams together: multidisciplinary and inter-departmental simulation training
  • learning about the limits of human performance
  • supported simulation allowing development of
    • self-awareness
    • contingency planning
    • communication skills.

At Auckland ED we have begun multi-disciplinary simulation afternoons with other clinical departments, out first event included HEMS, Emergency Department, Trauma Surgery, Cardiothoracics, Anaesthetics and Operating Theatres.  This was invaluable in ‘testing the system’ involving handover, clinical management, resourcing (labs, radiology, blood bank, theatre) and most especially inter-departmental communication and teamwork.  Our first simulation has garnered resounding positive feedback from all involved.

I would be interested in comments from others who are doing inter-departmental simulation and team training.

Click HERE for the full version of the article discussed above (secure area limited to ADHB staff)

 

“Total Immersion” Simulation…..!!

The Auckland Rescue Helicopter Trust (ARHT) works with multiple agencies, including NZ Defence, and has the good fortune from time to time to train alongside these groups.

On the 14th May we were invited to train in the ultimate in-situ simulation venue – the Royal New Zealand Navy Damage Control School with the RNZN Sea Safety Training Squadron. This involved fire training and vessel damage control (for this read blocking lots of holes letting water into a ship simulator…!)

Present were 5 ARHT crewman, our physical instructor, and several representatives from the New Zealand Police Search and Rescue unit.  I went along as the HEMS medic representative and to get an idea of how in-situ simulation is conducted in other services.  It was the epitome of a multidisciplinary team!

We started with the Fire-Fighting Training Unit (FFTU). After instruction of the use of the differing methods of fighting fires, donning fire-retardant suits, gloves and masks we firstly made up our own foam fire extinguishers, then used them on a gas fire. We also did the same on oil and diesel fires with fire blankets, CO2 extinguishers and lastly dry powder extinguishers.

fightingfire

alanafightingfire

We then moved on to the Damage Control Training Unit (DCTU).  After some brief instruction on ‘shoring up’ methods (how to block leaks in the ship), we moved into the unit for a tour before the real fun began. The DCTU is a faithful recreation of a section of a ship three decks high.  It is used to train Navy personnel in Damage Control (leak stopping and removal of flood water) and casualty evacuation. The DCTU uses hydraulics to simulate the rocking motion of a ship at sea; this enables students to experience the problems which can arise from the combination of motion and free surface water.

navy                                                               (The Simulator is is the background of this picture)

I was appointed team leader for my team of 7 – I was reliably assured this was due to me being small (5′), mouthy and Irish… It was a rather daunting prospect.  Even with the training and experience I have in a leadership capacity; I was now leading a team of people in something that I had no prior experience or knowledge of.  Add in the team-mix as described above, then lock us all in a confined space, with freezing cold water pouring (under massive pressure) in through multiple holes in the walls, roof and floor, plus darkness, smoke, noise and the motion of a rocking ship – doubly daunting…

Not surprisingly it was extremely difficult to keep overall situational awareness – I did most of the team leading being “hands –off”, but with my backside blocking a leak in the wall!  Despite this the team worked together brilliantly. We had allocated roles beforehand.  There was great use of closed loop communication, once a job was done those free returned to the team leader for further task allocation.  We managed to shore up all the major leaks in the engine room (where we started) then moved to help the second team out in the mess hall with further leaks.  We finished in waist deep water (waist deep if you were 6ft tall that is…!).

Escape was though an overhead hatch, weighed down by water from leaks in the decks overhead – again great teamwork was put to use getting the stronger team members up a rope ladder first to open the hatch against pressure and then help the rest up through the subsequent torrent of water.

There are cameras all through the DCTU – everything was filmed, the footage is then usually viewed in a de-briefing session following the scenario.  Unfortunately due to time constraints we didn’t manage to see the footage from our exercise.

A few colleagues were wondering what exactly an emergency medicine / HEMS doctor was doing on a Navy damage control exercise as (to quote) “it’s not something you’ll ever need to do… the ED is hardly going to sink…”.  However I feel there were multiple comparisons to this training and what we do every day in the workplace, be that in the ED or on the helicopter.  In-situ simulation aside, today proved an invaluable crisis resource management and team-building exercise for the ARHT group.  14 people from different services, with differing physical attributes and prior experience working together in a completely alien environment, doing something they have never done before…  It suddenly dawned on me this was no different to your usual gnarly trauma resuscitation crew on an ED night shift, except with maybe a few more lives at stake!

For more insight into how other high-performance services train to mitigate for the “fallibility of the human mind under great pressure” and how this can be translated into healthcare, see this post from the blog Resus Room Management. This has a link to the BBC Horizon documentary “How to avoid mistakes in Surgery” where Kevin Fong (a well-known Anaesthetist and Intensivist from the UK) explores human factors in medicine.

I would like to thank the instructors from the RNZN Sea Safety Training Squadron and also ARHT crewman Ati Wynyard for organising this very worthwhile training day.