Case Based Learning in the New Year: pneumothorax & lung ultrasound

Last week we ran another case-based learning session. The session consisted of a short discussion based around a case that we were tasked that involved a patient with a suspected pneumothorax.

We discussed the issues and challenges of managing a patient on the ground and in-flight with a pneumothorax. In addition, we discussed then practiced how we can use ultrasound as an added tool in the diagnosis of a pneumothorax in the prehospital setting.

To briefly summarize, I’ve divided up some discussion points

Medical

  • Both paramedics and doctors discussed the most important aspect in the patient with a pneumothorax in the pre-hospital setting was the clinical status
  • The ultrasound was noted to be extremely helpful for diagnosis however, presence of pneumothorax didn’t necessarily warrant intervention
  • Clinical condition was the overwhelming driver for intervention. The question arose regarding the role of ultrasound – “if the presence of pneumothorax did not necessarily mean intervention required, why use it?” In general, clinicians felt that knowledge about the condition would help make subsequent decisions in the case of deterioration
  • One theoretical approach was proposed – in a patient with pneumothorax that was reasonably stable, consider anesthesitizing & exposing the site for a chest drain then proceed with finger thoracostomy if deterioration. Several clinicians felt that it there was such concern to proceed with local anesthesia then probably a drain should just be placed.
  • In the patient with a left sided pneumothorax, there was strong agreement that loading the patient feet first such that the clinicians would have access to the left side (of our typically starboard loaded patient)
  • The likelihood of needle decompression success is only 50% – brief discussion about an anterior approach vs. a lateral approach

Operational

  • Knowledge regarding pneumothorax is key depending on the location of the patient. In situations on the east coast of the Coromandel then altitude becomes extremely important.
  • The early rule out diagnosis that the ultrasound can provide is very useful for managing flight plans
  • Weather was decided as a key factor that would alter management and it would impact possibly both medical decision making and flight operations
  • Placement of ultrasound in the machine: crewman/paramedic at the head of patient holding the machine with doctor on the patient’s right side
A little in-situ training. Enabled us to figure out optimal ergonomics and positioning for in-flight ultrasound. In case you're wondering, I donated my chest to science for this ultrasound to be done

A little in-situ training. Enabled us to figure out optimal ergonomics and positioning for in-flight ultrasound.
In case you’re wondering, I donated my chest for this ultrasound to be done (free of charge!)

Summary

  • Overall based on our evaluations of the process, it was a successful event with more case-based learning sessions planned
  • Clinicians reluctant to intervene for pre-hospital pneumothorax unless unstable
  • Strong communication among the team about the presence of a pneumothorax is essential and ultrasound greatly aids with this – affects both medical & operational decision making
  • Ergonomics are important but dependent on each setting; however a standard approach in the machine might be appropriate for positioning of the ultrasound

 

A simulation update: Latest session at the ARHT base

This week we ran an in-situ simulation with our duty crew (crewman, paramedic and doctor). We had great participation in a challenging scenario of massive hemorrhage in a blunt trauma patient.

As our simulation experience continues to grow we are always trialling new things. This past week we integrated several techniques that helped enhance the scenarios fidelity.

The scenario was a patient who had fallen off his motorbike at highspeed. There was a paramedic already on scene when our team arrived. The patient was in shock: BP 95/60, 130bpm, RR 28, 87% on room air, GCS 15.

Here’s a brief outline of what we did and why!

  • In-situ simulation: Make the most of the availability of your team. On the job training during a work day is a great way of maximizing educational opportunities. It doesn’t require that people come in on their day off and they still get paid while at work except their learning. We don’t use any expensive simulation centre – instead only using our training packs and equipment we were able to run this scenario at NO COST!
Mid way through a resus. We have all hands on deck, even getting our cameraman Matt to hold the IV!

Mid way through a resus. We have all hands on deck, even getting our cameraman Matt to hold the IV!

  • Set the scene with a video: using footage from the TV show Rescue 1 (filmed on our helicopters) we were able to begin the simulation with our team watching 2 minutes of a scenario to help them better picture the scene and envision the challenges of the local surroundings
  • Live patient actor: in scenarios that don’t require intubation this is especially powerful since we were able to capture our team’s ability to communicate with a live patient. Our patient had multiple traumatic injuries that was causing considerable pain. The team used managed the pain with ketamine and small doses of fentanyl. It was especially helpful to have a live patient since participants would receive real-time feedback if their pain regimen was working.
Having a live patient actor is a great asset and can add extra fidelity to the scenario. Definitely alters the way clinicians approach and speak with the patient.

Having a live patient actor is a great asset and can add extra fidelity to the scenario. Definitely alters the way clinicians approach and speak with the patient.

  • SimMon: I highly recommend this for anyone interested in doing in-situ simulation. Using an iPad and an iPhone, linked by Bluetooth (no Wifi needed) we are able to have a patient monitor with fully adjustable and modifiable vital signs! I have no relationship with the company that makes the app but we use it regularly and it’s must have for any educator running in-situ simulation. Available for download for less than $20NZD.
  • Ultrasound images for eFAST: Our doctor (Alana) performed a pre-hospital FAST and lung ultrasound. We had images and video downloaded ahead of time on a computer to show her the findings. This provided more realistic visual feedback that closely mimics a real clinical setting.
Alana checking out the eFAST findings on the laptop. Diagnosing pneumothorax & positive FAST

Alana checking out the eFAST findings on the laptop. Diagnosing pneumothorax & positive FAST

  • Integration of new medication: We are in the process of integrating a Tranexamic Acid protocol for trauma patients with suspected hemorrhage. This was our first time trialling the medication in a simulation setting. Great discussion around timing and especially helpful for our clinical team that we have clear guidelines when it can be administered.
  • Observation/Feedback by an industrial engineer: Tammy Bryan, is an industrial engineer from Auckland District Health Board, who joined us to observe our work with an interest in the ergonomics of scene set up. This was useful for a current state analysis and the beginning to work towards any changes that can make us more efficient!

Huge thanks to Bruce Kerr, Greg Brownson and Alana Harper who participated as our clinical and operational crew for the scenario. Also a huge thanks to Alice who was our live patient for the scenario. She did an outstanding job acting as a patient in pain with multiple injuries! Don’t worry, our team took care of her with lots of pain meds administered! And Chris was our paramedic who provided outstanding pre-hospital care before the team arrived

Sim and Choppers

I have written about checklists in medicine before, but in light of a recent publication in the New England Journal of Medicine, I was inspired again to write about it.

One of the leading advocates for checklists in medicine is Atul Gawande. His book “The Checklist Manifesto” is an excellent read for anyone interested in the topic and definitely well written for the lay-person. Notably he’s also the senior author on this randomized trial just published in NEJM. And while the NEJM is often busy publishing some questionably biased and often pharma-funded studies, this one deserves attention. But before I discuss more about the trial…I digress…

Just this week, while we were flying I observed something quite interesting. Typically when we fly in the helicopters, our pilots ask our crewman for landing checks. At which point the crewman will go through the checklist with the pilot answering appropriately. We…

View original post 660 more words

New clinical simulation lab at ARHT and our newest team member!

Over the past few months at ARHT, we’ve been working to secure a location that can be used as our clinical sim lab. While most of our sim is done outside, this will allow for a “think tank” and location to keep all of our supplies. A spot like this will have a huge positive impact on improving our ability to run effective in-situ simulation.

Rossi, our Emergency Medicine award winning medical student (and newest team member) While it may not be the exact replica of the EM award...it's pretty close!

Rossi, our Emergency Medicine award winning medical student (and newest team member) While it may not be the exact replica of the EM award…it’s pretty close!

In addition, we plan to use this site for task training and trialling new equipment. While it has taken some time to get it organized, we’ve made huge progress recently. One of the main reasons we’ve had such success can be attributed to our newest education team member, Rossi, who is a senior medical student at the University of Auckland. She has a keen interest in emergency medicine, retrieval medicine and trauma. Her enthusiasm has been crucial to getting us up and running with a fully functional sim lab. We should also acknowledge her recent achievement as the recipient of a special mention in Emergency Medicine for dedication & teamwork at U of Auckland Medical school. Welcome Rossi, and we look forward to all that you bring!

I also felt it would be great to show the progress we’ve made with the sim lab. This will be an outstanding location to think, work and practice. We’ll be able to re-pack packs for simulations and engage in task training modules.

Here’s a few pics of the progress…and completion!

Sim lab: the beginning

Sim lab: the beginning

Rossi doing her best Vanna White impersonation

Rossi doing her best Vanna White impersonation

Sim Lab: the current state! Ready for use!

Sim Lab: the current state! Ready for use!

Sim Lab: airway task trainers...clearly needing a cric to be performed!

Sim Lab: airway task trainers…clearly needing a cric to be performed!